257 research outputs found

    Vapour growth of silicon: growth anisotropy and adsorption

    Get PDF
    The development of facets on hemispherical single crystal substrates is investigated for growth in a near-equilibrium hot-wall CVD system, in order to study the orientation dependence of silicon crystal growth as a function of gas phase parameters in the Si-H-Cl system. It is found that only faces with indices {hhk} are stable. On the basis of their different behaviour as a function of experimental conditions, these faces are divided into {hhk}h k and {hhk}h < k faces. The {111} and {001} faces have to be considered separately. From the experimental dependencies it is concluded that the adsorption of chlorine and hydrogen plays a dominant yet ambivalent role: it stabilizes the {001} and the {hhk}h k faces, but destabilizes the {hhk}h < k faces. In order to explain these effects, it has to be assumed that under CVD conditions dimer-like reconstructions are present on all silicon faces. The interplay between surface dimer reconstructions and adsorption processes also shows up in the kinetic roughening of the different faces at high supersaturations. Theoretical calculations of the probabilities of adsorption of growth species on the different faces are used to explain the differences in kinetic roughening of these faces and the observed change in orientation of growth hillocks on the {111} faces which occurs when the supersaturation is increased

    Characterisation of sol-gel PZT films on Pt-coated substrates

    Get PDF
    A conventional sol-gel process was used to spin-cast PZT films on oxidized Si wafers coated with sputtered Pt layers. After annealing at 550 degrees C-800 degrees C, the resulting perovskite-type PZT films showed different textures and surface morphologies, depending on whether or not a Ti adhesion layer was used. If a Ti layer was present, Ti diffusion into and through the Pt film leads to a compound Pt3Ti, which facilitates crystallization of the perovskite PZT phase; without Ti, crystallization is more difficult and occurs via the growth of dendritic crystallites. Several optical and electrical properties of the PZT films have been measured; the first results indicate high dielectric constants ( epsilon approximately=480) and acceptable ferroelectric behaviour

    Chemistry in nanochannel confinement

    Get PDF
    This review addresses the questions of whether it makes sense to use lithographically defined nanochannels for chemistry in liquids, and what it is possible to learn from experiments on that topic. The behavior of liquids in different classes of pores (categorized according to their size) is reviewed, with a focus on chemical reactions and protein dynamics. A number of interesting phenomena are discussed for nanochannels with feature sizes that are manufacturable with modern photolithography-based fabrication technology. The use of spectroscopic methods to investigate chemistry in nanochannels, where both spectroscopic method and nanochannels are integrated into a single device, will be evaluated

    High quality ZnO layers with adjustable refractive indices for integrated optics applications

    Get PDF
    Thin ( 1 μm) crystalline ZnO films with a good optical quality and good (0002) texture are grown under two considerably different process parameter sets using a r.f. planar magnetron sputtering unit. The optical parameters of the two corresponding ZnO layers are distinctly different: high refractive index ( 2.0 at λ = 632.8 nm) ZnO films resembling the single crystal form, and ZnO films with considerably lower (typical difference 0.05) refractive indices. The refractive index of the latter ZnO layers is adjustable ( 1.93–1.96 at λ = 632.8 nm) through the process deposition parameters. It is shown that the difference in refractive index between the two ZnO types most probably results from a difference in package density of the crystal columns. The optical waveguide losses of both ZnO types are typically 1–3 dB/cm at λ = 632.8 nm, however the low refractive index ZnO layers need a post-deposition anneal step to obtain these values. The two ZnO types are used to fabricate optical channel-and slab waveguides with small refractive index differences.\u

    The surface adhesion parameter: a measure for wafer bondability

    Get PDF
    A theory is presented which describes the initial direct wafer bonding process. The effect of surface microroughness on the bondability is studied on the basis of the theory of contact and adhesion of elastic solids. An effective bonding energy, the maximum of which is the specific surface energy of adhesion, is proposed to describe the real binding energy of the bonding interface including the influence of the wafer surface microroughness. Both the effective bonding energy and the real area of contact between rough surfaces depend on a dimensionless surface adhesion parameter, &thetas;. Using the adhesion parameter as a measure, three kinds of wafer contact interfaces can be identified with respect to their bondability; viz. the non-bonding regime (&thetas;>&ap;12), the bonding regime (&thetas;<&ap;1), and the adherence regime (1<&thetas;<12). Experimental data are in agreement with this theor

    Characteristics of high quality ZnO thin films deposited by pulsed laser deposition

    Get PDF
    This paper show that under optimized deposition condition, films can be grown having a full width at half maximum (FWHM) value of the (002) x-ray diffraction (XRD) line a factor of 4 smaller than the previously published results using PLD and among the best reported so far by any technique. Under optimized conditions, c-axis oriented ZnO films having a FWHM value of the (002) XRD reflection line less than 15°, electrical resistivities around 5 × 10-2 Ω cm and optical transmittance higher than 85% in the visible region of the spectrum were obtained. Refractive index was around 1.98 and the Eg = 3.26 eV, values characteristic of very high quality ZnO thin films

    Characterization of a planar microcoil for implantable microsystems

    Get PDF
    This paper discusses the modelling, design and characterization of planar microcoils to be used in telemetry systems that supply energy to miniaturized implants. Parasitic electrical effects that may become important at a.c. frequencies of several megahertz are evaluated. The fabrication process and electrical characterization of planar receiver microcoils will be described, and it will be shown that a power of a few milliwatts is feasible.\u
    • …
    corecore